
A System V Compatible Implementation of 4.2BSD Job Control David
C. Lennert Hewlett-Packard Company Information Technology Group
hplabs!hpda!davel This paper gives an overview of how process
groups and controlling terminals are handled in System V and
4.2BSD and then discusses the effect 4.2BSD job control has on
these things. A modified 4.2BSD interface is discussed which
supports 4.2BSD job control functionality but in a way which al-
lows AT&T System V compatibility. This interface has been imple-
mented in Hewlett-Packard's UNIX|- |- UNIX is a trademark of AT&T.
system, HP-UX.

INTRODUCTION The job control functionality first introduced into
UNIX by Jim Kulp of IIASA and later provided by 4.2BSD UNIX has
become a _d_e _f_a_c_t_o industry standard. However, this job control
facility, as implemented in 4.2BSD, is incompatible in several
respects with System V. Recently a proposal was submitted to the
IEEE P1003 Portable Operating System standard committee by Sun
Microsystems [Harris86] which attempts to define 4.2BSD job con-
trol functionality in a way compatible with System V. Hewlett-
Packard Company has been independently developing a similar pro-
posal. HP's proposal is almost identical to Sun's but goes
beyond it to address many "corner case" areas which strongly af-
fect System V compatibility. This paper gives an overview of the
relevant areas of System V functionality which are affected. It
then overviews how job control is implemented in 4.2BSD and how
this impacts the System V interface. Finally, the HP-UX inter-
face is presented and a similar overview of its implementation is
given. The various overviews cover how job control signals are
generated, passed, and acknowledged by the tty driver and user
processes. They also explain how process groups are established
and changed.

FUNDAMENTALS In the following discussion the reader is assumed to
have an understanding of several fundamental concepts found in
the UNIX operating system. For convenience these concepts are
briefly reviewed here. Process Groups and Controlling Terminals
Every process has a unique numeric value associated with it
called its _p_r_o_c_e_s_s _I_D. Every process also has a non-unique
numeric value associated with it called its _p_r_o_c_e_s_s _g_r_o_u_p _I_D. A
_p_r_o_c_e_s_s _g_r_o_u_p is a collection of processes having identical
numeric process group ID's. Typically, one process in the pro-
cess group will be the _p_r_o_c_e_s_s _g_r_o_u_p _l_e_a_d_e_r. The process
group
leader has a process ID which is numerically equal to the process
group ID associated with all processes in the process group.
Typically, the process group leader is the ancestor of all other
processes in the process group. A process can have a _c_o_n_t_r_o_l_l_i_n_g
_t_e_r_m_i_n_a_l which is usually the login terminal of the user who
created the process. A process can obtain access to its control-
ling terminal by opening the file /_d_e_v/_t_t_y. All processes in the
same process group typically share the same controlling terminal.
A terminal usually has a process group ID associated with it,
called the _t_t_y _g_r_o_u_p _I_D. When a user generates a keyboard signal
(e.g., by typing the interrupt character), the tty driver sends
the appropriate signal to all processes which are members of the
process group indicated by the tty group ID. In summary, usual-
ly, but not necessarily, all processes in the same process group

share the same controlling terminal, and the tty group ID for
that terminal is equal to the process group ID of the process
group. For further explanation see [Roch85] and intro(2) in your
favorite UNIX Programmer's Manual. 4.2BSD Job Control 4.2BSD job
control allows users to selectively stop (suspend) the execution
of processes and continue (resume) their execution at any later
point. This only easily works for processes which are stopped
and continued during the same login session. The user almost al-
ways employs this facility via the interactive interface jointly
supplied by the system tty driver and a job control shell such as
csh(1) or ksh(1). The tty driver recognizes a user-defined
_s_u_s_p_e_n_d _c_h_a_r_a_c_t_e_r which causes all current foreground
processes
to stop and the user's job control shell to resume. The job con-
trol shell provides commands which continue stopped processes in
either the foreground or background. The tty driver will also
stop a background process when it attempts to read from or write
to the users terminal. This allows the user to finish or suspend
their foreground task without interruption and continue the
stopped background process at a more convenient time. To enable
the system to support this, 4.2BSD job control introduces five
new signals: SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU, and SIGCONT.
The first four signals cause a process to stop unless the signals
are being caught or ignored. SIGCONT always causes a stopped
process to continue. (SIGCONT has no effect on processes which
are not stopped.) SIGSTOP cannot be caught or ignored. The tty
driver sends some of these signals to all processes in the tty
process group under the following conditions: The driver sends
SIGTSTP when the user types the suspend or delayed suspend char-
acter. The driver sends SIGTTIN (SIGTTOU) when a background pro-
cess attempts to read from (write to) its controlling terminal.
SIGCONT is usually only sent by a job control shell when the user
requests that a stopped process be continued. Of course, any
signal can be sent by a user via the kill(1) command or by a pro-
gram via the kill(2) system call. It should be noted that these
signals can be added to a UNIX implementation in a manner which
preserves source and object code compatibility. A process is not
required to be aware of them. By default the signals do "the
right thing." For further information see [Joy80] and [UCB83].

AT&T SYSTEM V Introduction System V process groups closely resem-
ble the concept of a login session. That is, all processes
spawned during the same login session tend to belong to the same
process group, and keyboard signals are typically sent to all
processes spawned from the login session. System V Process Group
Handling In System V, the only way to alter the process group as-
sociated with a process (p_pgrp) is via setpgrp(2). And this can
only set the process group to equal the process ID (pid) of the
process. When this happens the resulting process with pid =
p_pgrp is called a process group leader. Since a process's pid
can never change, once a process issues a setpgrp(2) call it ir-
revocably becomes a process group leader. The init(1M) process
spawns all other processes on the system either directly or in-
directly. Before directly spawning a process (after the fork(2)
but before the exec(2)), init calls setpgrp(2). Thus all origi-
nal children (not orphans) of init are forced to (irrevocably) be
process group leaders. When a new process is created, it is as-

signed a new pid but it inherits the process group number of its
parent. Thus child processes are, by default, not process group
leaders (although they can become a process group leader via
setpgrp(2)). When a process group leader which has a controlling
terminal (see below) terminates, SIGHUP is sent to all processes
in the same process group. Further, when a process group leader
terminates, all processes that belong to this process group are
altered to belong to no process group (their p_pgrp is set to
zero). More precisely, when any process exits, all processes
whose process group (p_pgrp) equals the pid of the terminating
process will have their p_pgrp set to zero; this check succeeds
only in the case of a terminating process group leader. System V
Controlling Terminals A terminal that is currently open by a pro-
cess may also be a "controlling terminal" for a process group.
When certain control characters are typed on a controlling termi-
nal, signals are sent by the terminal driver to all processes
that belong to the process group associated with the terminal.
When a process becomes a process group leader (via setpgrp(2)) it
automatically loses its controlling terminal. After this, the
first terminal (that is not already a controlling terminal)
opened by the process is assigned to be the controlling terminal
for that process. Also, the process group associated with that
terminal (t_pgrp, also known as the tty group ID) is set equal to
the process group associated with the process group leader
(p_pgrp). All child processes inherit the controlling terminal
and process group of their parent. More precisely, in System V,
the process group associated with a terminal (t_pgrp), can be
changed in the following ways: When a terminal is opened by a
process group leader (pid == p_pgrp) that does not already have a
controlling terminal, it becomes the controlling terminal for
that process group (t_pgrp is set equal to p_pgrp) if it is not
already a controlling terminal. When a process group leader (pid
== p_pgrp) dies, if it has a controlling terminal that is associ-
ated with the same process group (t_pgrp == p_pgrp), then that
terminal is disassociated from that process group (t_pgrp is set
to zero). When the last process to have a terminal open closes
that terminal, the terminal is disassociated from its process
group (t_pgrp is set to zero). System V Typical Scenario This is
a typical scenario for the birth and death of a process group and
its controlling terminal. The init(1M) process wants to enable a
terminal for login. It calls fork(2) to create a new process and
then calls setpgrp(2) to make the process a process group leader
which also removes the process's controlling terminal. It then
runs the getty(1M) program as the process via exec(2). Getty
opens the terminal causing it to become getty's controlling ter-
minal and be associated with getty's process group (t_pgrp is set
to p_pgrp). Getty replaces itself with login(1) which replaces
itself with a login shell, e.g., sh(1). Usually no program calls
setpgrp(2) and thus all descendent processes of the login shell
are in the same process group and have the same controlling ter-
minal; keyboard signals are sent to all processes launched during
this session. When a logout occurs, the login shell (which is
the process group leader) dies and the controlling terminal is
freed up (t_pgrp is set to zero) so that it can be claimed as a
controlling terminal by a subsequent getty respawned by init.
SIGHUP is sent to all processes in the same process group. The
process group (p_pgrp) of all descendent processes is then set to

zero. Note that there may continue to be background processes
(previously started by the now defunct login shell) which contin-
ue to execute but keyboard signals will no longer be sent to
these processes (since both t_pgrp and p_pgrp equal zero).

4.2BSD Introduction 4.2BSD process groups closely resemble the
concept of a task within a login session, where a task represents
a set of processes which are affected as a group by job control
operations. Every time a job control shell (e.g., csh) spawns
either a foreground or background command, all processes in the
pipeline (and their descendents) are placed in their own unique
process group with the first command in the pipeline being the
process group leader. A task is in the foreground when the pro-
cess group associated with the controlling terminal for the task
(t_pgrp) is equal to the process group associated with the
processes in the task (p_pgrp). Otherwise the task is in the
background. A job control shell moves a job between the fore-
ground and background by adjusting the terminal process group
(t_pgrp) of the controlling terminal. Note that 4.2BSD forms new
process groups with process group leaders much more often than
System V usually does (every command versus every login). 4.2BSD
Process Group Handling In 4.2BSD, the process group associated
with a process (p_pgrp) can be altered in two ways. The first is
via setpgrp(2). 4.2BSD's setpgrp(2) is analogous to System V's
setpgrp(2) except that the former can affect processes other than
the current process and can cause the affected process to adopt a
process group other than that process's process ID (pid). Thus,
unlike System V, a process can cease to be a process group
leader. In addition to setpgrp(2), a process that is not a
member of any process group (p_pgrp == 0) will "inherit" or join
the process group associated with its controlling terminal at the
time the process is assigned a controlling terminal during
open(2). If the terminal being opened is not presently the con-
trolling terminal for any process group, then the process opening
the terminal will first be made a process group leader (p_pgrp
will be set to p_pid) and then the terminal will become the con-
trolling terminal for this new process group. All this is done
by the tty open code. When a new process is created it inherits
the process group of its parent. Unlike System V init(1M),
4.2BSD init(8) does not call setpgrp(2) when spawning other
processes. All processes spawned by init inherit init's process
group which happens to be zero ("not a member of any process
group"). This is actually crucial for assigning controlling ter-
minals; see below. 4.2BSD Controlling Terminals Unlike System V,
a 4.2BSD process does not lose its controlling terminal when
altering its process group (via setpgrp(2)). Also unlike System
V, a 4.2BSD process that is a process group leader (pid ==
p_pgrp) but which has no controlling terminal does not receive a
controlling terminal when opening a new terminal. A process can
obtain a controlling terminal under 4.2BSD in only the following
ways: A process can inherit a controlling terminal from its
parent. A process that is not a member of any process group
(p_pgrp == 0) can open any terminal and that terminal will become
its controlling terminal (whether or not it is already the con-
trolling terminal for another process). However, this can happen
in one of two ways: If the terminal is not already a controlling
terminal (t_pgrp == 0) then the opening process becomes a process

group leader (its p_pgrp is set equal to its pid) and the termi-
nal becomes its controlling terminal (t_pgrp is set to the new
p_pgrp value). If the terminal is already a controlling terminal
for another process (t_pgrp is not zero) then the opening process
joins the process group already associated with the controlling
terminal. That is, p_pgrp is set equal to the current t_pgrp.
Note that the opening process does not become a process group
leader, i.e., p_pgrp is not equal to its pid. Note that this
procedure only happens during the first terminal open for a pro-
cess that was either originally spawned by init or whose ancestor
processes (all the way back to init) never altered their process
group (p_pgrp) either by opening a terminal or calling
setpgrp(2). A terminal ceases to be a controlling terminal
(t_pgrp is set to zero) under 4.2BSD in the following way: When
the last process to have a terminal open closes that terminal
then the terminal is disassociated from its process group (t_pgrp
is set to zero). There are two other facilities unique to 4.2BSD
which affect access to control terminals: the TIOCSPGRP ioctl(2)
and vhangup(2). The TIOCSPGRP ioctl(2) function changes a
terminal's process group (t_pgrp) to any desired value. It is
typically used by csh(1) to control which set of processes (pro-
cess group) is in the foreground. The vhangup(2) function is in-
voked by init after forking but before exec'ing getty. This
function removes read and write permission for all processes (in-
cluding the caller) that have the controlling terminal open
(whether or not it is their controlling terminal). It then sends
SIGHUP to the process group associated with the terminal
(t_pgrp). The latter action is similar to the System V func-
tionality that sends SIGHUP to a process group on death of the
process group leader; 4.2BSD does not do this on the death of a
process group leader. 4.2BSD Typical Scenario This is a typical
scenario for the birth and death of a login, its controlling ter-
minal, and process groups associated with a job. The init(8)
process wants to enable a terminal for login. First it creates a
new process via fork(2). Then it opens the terminal which (be-
cause the p_pgrp inherited from init is zero) causes it to become
the controlling terminal for this process and either alters the
process group (p_pgrp) of the process to match the terminal pro-
cess group (t_pgrp) if non-zero, or alters both p_pgrp and t_pgrp
to equal the process ID (pid) if t_pgrp is zero. At this point
the new process has a controlling terminal whose process group
(t_pgrp) is equal to the process's process group (p_pgrp). How-
ever, the process may not be a process group leader (i.e., p_pgrp
may not equal pid). Now the new process calls vhangup(2) to re-
move access permissions for the controlling terminal from all
processes (as well as sending SIGHUP to any processes in the pro-
cess group previously associated with the terminal). The new
process then reopens the terminal to get a file descriptor with
read and write permissions since the vhangup(2) removed these
permission from the file descriptor returned by the previous
open. The previous file descriptor is not closed until now to
prevent losing the controlling terminal; (remember that p_pgrp
for the new process is no longer zero.) The new process now re-
places itself with getty(8) which replaces itself with login(1)
which replaces itself with a login shell, e.g., csh(1). Csh now
begins to manipulate the process group associated with the termi-
nal (t_pgrp) via the TIOCSPGRP and TIOCGPGRP ioctl(2) calls and

the process group associated with its child processes (p_pgrp)
via setpgrp(2) in order to allow job control. This happens
(briefly) in the following way: Csh launches a pipeline by making
all programs in the pipeline be immediate descendents of csh.
(This is different from sh which makes all programs in the pipe-
line except the last be descendents of the last program in the
pipeline.) All programs in the pipeline belong to the same pro-
cess group (not the same as csh's process group) and the first
program in the pipeline is the process group leader (its pid is
equal to the process group for the pipeline). If the pipeline is
being launched in the foreground (or moved to the foreground)
then the process group associated with the terminal (t_pgrp) is
set to the process group of the pipeline. When a logout occurs,
the login shell dies. Any pending SIGTTIN, SIGTTOU, and SIGTSTP
signals are cleared for all descendent processes. All immediate
child processes are inherited as orphans by init; if any are
currently stopped then they are killed (SIGKILL). If the exiting
process is the last process that has the controlling terminal
open then the terminal's process group (t_pgrp) is set to zero,
otherwise it is left alone. Nothing special is done for process
group leaders; in fact, login shells are frequently not process
group leaders. (SIGHUP is not sent and the controlling terminal
is not necessarily cleared.) Note that there may continue to be
processes (previously started by the now defunct login shell)
which continue to execute. And that keyboard signals can still
be sent to these processes under some circumstances (specifically
when the processes were in the foreground (p_pgrp == t_pgrp) when
the login shell died; this usually only happens when the login
shell is killed from another terminal via kill(1).) Note also
that this continues to be true even after a new session logs in
on the same terminal since the new login shell joins the process
group which is already associated with the terminal from the pri-
or login. Job Control Signal Handling The following discussions
concerning signals and kernel process synchronization are similar
to ones found in [Thom78], [Ritch79], and [Bach79]. Basic Over-
view Usually a process is either running or sleeping waiting for
an event to occur (e.g., I/O completion). When a signal is sent
to a process (either by another process or an I/O driver) what
actually occurs is that a flag is set for the receiving (or tar-
get) process indicating that the signal has been sent and the
target process performs the actual signal operation to itself the
next time it runs. Thus sending a signal amounts to requesting
the target process to itself perform a particular action. If the
target process is already running it is interrupted to process
the signal. If it is runnable but not currently running then the
system merely waits for it to become the currently running pro-
cess at which point the signal is acknowledged. If the target
process is sleeping then either it is moved into a runnable state
(if it is sleeping at an "interruptable" priority) or it is left
sleeping (at an "uninterruptable" priority) and the signal is not
acknowledged until the slept on event occurs. The kernel pro-
cedure which sends a signal is psignal() and is executed by the
sending process or driver. Psignal() updates a list of pending
signals for the receiving process. If the receiving process is
the currently running process and it is executing in kernel mode
then the pending signal is acknowledged when the current system
call completes. (This is the case where the sending process and

the receiving process are the same.) If the receiving process is
the currently running process and it is executing in user mode
then a special event is generated which causes the process to
enter the kernel and acknowledge the pending signal. (This is
the case where the sending "process" is really an interrupt
handler which, for example, is servicing an interrupt character
typed on a user's terminal.) If the receiving process is sleeping
but not holding off signals then it is set running via wakeup();
the pending signal is acknowledged as soon as the receiving pro-
cess executes. If the receiving process is suspended in a sleep
state that holds off signals ("sleeping uninterruptably") then it
is left sleeping; the pending signal will be acknowledged after
the waited for event occurs. The procedure which tests for a
pending signal is issig() and is executed by the receiving pro-
cess. Issig() is executed whenever the receiving process changes
from kernel mode to user mode execution; for example, at the com-
pletion of a system call. It is also executed whenever the re-
ceiving process is awakened from being suspended in a sleep state
that does not hold off signals ("sleeping interruptably"). The
procedure which performs the requested signal operation (e.g.,
invoking a signal handler or killing the process) is psig() and
is executed by the receiving process if issig() returns true.
This basic structure is essentially the same in System V, 4.2BSD,
and HP-UX. However, under 4.2BSD-style job control, these gen-
eral principles can work slightly differently: When processing
stop signals, the psignal() function, called by the sending pro-
cess, actually stops the target process sometimes. In these
cases, the target process never realizes that it received the
signal or that it stopped. However, in other cases, psignal()
performs the usual process of setting the flag (p_sig) requesting
that the target process stop itself the next time it runs. The
issig() function, called by the target process, can actually stop
the target process. The psig() function is only called in the
case where a user handler has been provided for the job control
signal. A more complete description of job control signal han-
dling is contained in the pseudocode below. psignal() To send
SIGCONT to a target process:

sending SIGCONT clears any pending stop signals;
if the target process is STOPPED but is also SLEEPING (p_wchan != 0)
 merely continue the process's SLEEP;

else if the target process is STOPPED and is NOT SLEEPING (p_wchan == 0)
 set the process RUNNING;

To send a stop signal (SIGTSTP, SIGTTIN, SIGTTOU, SIGSTOP) to a
target process:

sending a stop signal clears any pending SIGCONT;

if the target process is RUNNABLE or RUNNING
 note the pending signal in p_sig;

else if the target process is SLEEPING NON-interruptably
 note the pending signal in p_sig;

else if the target process is SLEEPING interruptably

 and IS catching the signal
 note the pending signal in p_sig and
 wakeup the process from its sleep;

else if the target process is SLEEPING interruptably
 and is NOT catching the signal
 stop the process by setting its state to SSTOP
 but leave it sleeping on its p_wchan;
 send SIGCLD to parent (if it expects BSD-style)

General note: sending a stop signal (other than SIGSTOP) to a
child of init causes the target process to be killed. issig()
Issig() is called in all cases except where the process was
sleeping interruptably and was not catching the signal. To ack-
nowledge a pending SIGCONT or stop signal:

if in the middle of a VFORK
 hold off all stop signals (pretend they don't exist yet)

else if catching the signal
 return a request to invoke user signal handler via psig()

else if SIGCONT
 do nothing /* pretend it doesn't exist */

else /* stop signals */
 stop the process by setting its state to SSTOP
 send SIGCLD to parent (if it expects BSD-style)
 call swtch() to dispatch another process

General note: sending a stop signal (other than SIGSTOP) to a
child of init causes the target process to be killed. psig()
Psig() is called whenever issig() returns an indication that a
user handler is defined for a job control signal. Psig() merely
invokes the user signal handler. wakeup() The fact that a pro-
cess is sleeping (waiting for an event to occur) is indicated by
two process state values: p_wchan is non-zero, indicating the
event being waited for, and the process state is SSLEEP. Wake-
up() usually causes all processes waiting (sleeping) on a speci-
fied event to be awakened. When a process is awakened two things
happen: The process is removed from the sleep queue (p_wchan is
cleared) and it is added to the run queue. If, however, wakeup()
discovers a process whose p_wchan matches the specified event but
whose process state is SSTOP (stopped) then the process is re-
moved from the sleep queue (indicating that the waited for even
has happened) but it is not placed on the run queue. A subse-
quent SIGCONT will cause it to be placed on the run queue. Thus
it is possible to have a process which is both sleeping (p_wchan
non-zero) and stopped (process state is SSTOP rather than
SSLEEP). Signal Setup via init When init(8) launches any process
it causes the process to ignore all the job control stop signals
(SIGTSTP, SIGTTIN, & SIGTTOU). This allows login shells which
are not job control shells to automatically ignore the signals.
Further, all descendent processes of such a login shell will also
ignore these signals unless they explicitly enable them.
Foreground/Background Processes Basic Overview 4.2BSD job control
supports the notion of a process being in the or The distinction

is a background process is usually forced to stop when it at-
tempts to perform I/O (including most control operations) on its
controlling terminal, while a foreground process is not hindered.
Specifically, when a background process attempts to read from its
controlling terminal it is sent the SIGTTIN signal which, by de-
fault, causes it to stop. When it attempts to write to its con-
trolling terminal and LTOSTOP has been enabled for the terminal,
then the process is sent the SIGTTOU signal which, by default,
causes it to stop. If, however, a background process has chosen
to catch the signal, the specified user handler is invoked. If
the process is ignoring or masking the stop signal(s), then the
terminal I/O request returns an I/O error, EIO. A background
process is one whose process group (p_pgrp) is not equal to the
process group of its controlling terminal (t_pgrp) (and t_pgrp is
not zero). All other processes (including ones doing I/O to ter-
minals that are not their controlling terminals) are considered
to be in the foreground. Tty Driver Provisions To distinguish
between foreground and background programs the tty driver must
perform checks on attempted I/O operations to a process's con-
trolling terminal. This is done in several places. At the be-
ginning of a read/write system call the tty driver checks to see
if the calling process is in the background. If it is, then all
processes in the process group of the calling process are sent
the appropriate signal (SIGTTIN or SIGTTOU) unless the signal is
masked or ignored by the calling process. In this case the
driver returns the EIO error. After the tty driver sends the
signal, the calling process is put to sleep waiting for the
_l_i_g_h_t_n_i_n_g _b_o_l_t _e_v_e_n_t|-. |- The lightning bolt event is a
standard
UNIX event which occurs frequently, for example, every second.
This allows the calling process to receive the signal (and usual-
ly stop). When the process returns from the sleep (usually by
being continued) the tty driver repeats the foreground/background
check before proceeding with the operation. When the process is
in the foreground, the I/O operation proceeds. In the case of a
terminal read this usually results in the process being put to
sleep to wait for input characters to arrive. At this point the
user could type their suspend character (e.g., ^Z). This causes
the interrupt portion of the tty driver to send SIGTSTP to the
controlling terminal's process group (i.e., all processes which
are in the foreground). In our scenario this would include the
process sleeping on terminal input, and this would typically
cause it to stop. When a sleeping process is stopped it is also
left sleeping as well. If, in this case, tty input characters
subsequently arrived then the process would be awakened. Howev-
er, because it is also stopped, it would not be set running; it
would merely be "unslept". At some later time the process would
be continued (e.g., via a csh "fg" or "bg" command which sends
SIGCONT). If the process had not been previously unslept it
would merely continue its sleeping; it would receive no indica-
tion that it had stopped and continued. If the process had been
previously unslept it would now be set running. When the process
is set running it resumes execution in the tty driver. Because a
(potentially substantial) amount of time has elapsed and because
the process may have been stopped and restarted, the tty driver
is no longer sure whether this process is still in the fore-
ground. So before checking if input characters are available,

the tty driver rechecks whether the process is in the foreground
or background. This is necessary because, in our scenario, the
stopped process could have been continued in the background (via
csh "bg"). To check this the tty driver merely repeats the
foreground/background check it made at the beginning of the sys-
tem call.

SYSTEM V INCOMPATIBILITIES AND THEIR RESOLUTIONS Job control as
implemented in 4.2BSD is incompatible with System V semantics in
some significant respects. This section discusses each of these
incompatibilities and the resolution implemented in HP-UX to
maintain System V compatibility. The system interface needed to
support 4.2BSD-style job control, tailored for System V compati-
bility as discussed in this section, is presented in the form of
manual page excerpts in [Len86]. Setpgrp(2) Changes Because the
needed semantics of 4.2BSD setpgrp(2) conflict with the semantics
of System V setpgrp(2), the 4.2BSD setpgrp(2) function was
renamed to be setpgrp2(2). (The choice of new name is arbitrary;
setpgrp2 was chosen in the same spirit as 4.2BSD's wait3(2).)
SIGHUP Changes System V semantics state that when a process group
leader dies, all processes in the same process group are sent the
SIGHUP signal which, by default, kills all the processes. Job
control shells execute a command by making all processes in the
pipeline belong to the same (brand new) process group and by mak-
ing the first program in the pipeline be the process group
leader. Typically, the first program in a pipeline terminates
before the other programs. Under System V semantics, this would
cause the premature death of the remaining pipeline. Because of
this, 4.2BSD does not generate SIGHUP on process group leader
death. In order to support System V semantics and still allow
job control to function properly, HP-UX makes a distinction
between a "System V process group leader" and a "job control pro-
cess group leader". A System V process group leader is given
System V semantics (SIGHUP is generated) and a job control pro-
cess group leader is given 4.2BSD semantics (SIGHUP is not gen-
erated). A process which becomes a process group leader via
setpgrp(2) is considered to be a System V process group leader.
A process which becomes a process group leader via setpgrp2(2) is
considered to be a job control process group leader. Since the
HP-UX (and System V) init(1M) program calls setpgrp(2) on behalf
of all processes it spawns, all login shells start out as System
V process group leaders. A process must explicitly call
setpgrp2(2) to deviate from the System V semantics. SIGCLD
Changes Under System V, SIGCLD is sent to a process whenever one
of its immediate child processes dies. Under 4.2BSD, SIGCLD (or
its variant, SIGCHLD) is also generated when a process changes
state from running to stopped. Since a System V application
would not expect to receive SIGCLD under these new circumstances
and since a job control shell would not be able to function prop-
erly without such notification, a compatible compromise was
developed. The (parent) process wishing to trap SIGCLD may set a
flag when calling the HP-UX sigvector(2)|- |- Sigvector(2) is an
HP-UX extension proposed to the IEEE P1003 [Head85] which sup-
ports both the reliable signal operations of 4.2BSD sigvec(2) and
the conventional signal operations of System V signal(2). In
HP-UX, signal(2) is implemented as a library using sigvector(2).
Note that the changes proposed here to sigvector(2) can be ident-

ically made to 4.2BSD sigvec(2). routine to establish a signal
handler. This flag will cause SIGCLD to be sent for stopped
children, in addition to terminated children. A System V appli-
cation using signal(2) will see the System V compatible SIGCLD
semantics. Controlling Terminal Changes Under System V, whenever
a process group leader dies, the controlling terminal associated
with that process group (if any) is deallocated (disassociated
from that process group). 4.2BSD does not deallocate controlling
terminals on process group leader death for the following reason:
Job control shells make the lead process in every pipeline a pro-
cess group leader. If the controlling terminal for each pipeline
were deallocated whenever the lead process terminated, then the
remaining processes would effectively become background processes
(assuming they were currently in the foreground) and would stop
when any of them attempted subsequent I/O to the terminal. To
allow both semantics, controlling terminals are only deallocated
when a "System V process group leader" dies and not when a "job
control process group leader" dies. (See the discussion of SIGH-
UP changes above.) However, this change leads to the following
problem: In order for a terminal to be allocated as a controlling
terminal for a new login, it must be deallocated when the previ-
ous login terminates. System V relies on process group leader
death to deallocate controlling terminals (since all login shells
are forced to be process group leaders by init(1M)). This is no
longer reliable since login shells could become "job control pro-
cess group leaders". Further, not all logins are spawned direct-
ly by init(1M); the 4.2BSD rlogin facility is a prime example.
4.2BSD solves this problem by allowing a new login to join the
process group of the controlling terminal which is still allocat-
ed from the previous login. However this violates System V com-
patibility. The solution chosen was to mark a process that
causes a controlling terminal to be allocated and to deallocate
the controlling terminal whenever that process terminates. This
reliably catches logins which are spawned either directly or in-
directly from init(1M), whether they are "System V process group
leaders" or not. Controlling terminals continue to be deallocat-
ed on death of System V process group leaders using the System V
semantics. Security Several security holes exist in the 4.2BSD
process group altering mechanisms. To plug these holes the fol-
lowing changes were made. 4.2BSD setpgrp(2) allows a process to
alter the process group associated with another process to any
value. 4.2BSD restricts this operation so that the affected pro-
cess must pass the same security restrictions enforced when send-
ing signals, or must be a descendent of the calling process.
However, this still allows a process to join a process group al-
ready associated with another user. To tighten this security,
setpgrp2(2) was further restricted such that if the specified new
process group value is equal to the process ID (pid) or process
group ID of any existing processes, then all such processes must
pass the above security restrictions. Similarly, the 4.2BSD
TIOCSPGRP ioctl(2) allows a terminal's process group to be al-
tered to any value. This allows a user's terminal to easily be-
come an additional "controlling terminal" for another user's pro-
cess group; keyboard signals can be sent to the other user's
processes, thus bypassing the security enforced by kill(2). Be-
cause of this, the TIOCSPGRP ioctl(2) was altered to enforce
similar security restrictions as setpgrp2(2). In System V and

4.2BSD, a process can obtain access to its controlling terminal
by opening the file /_d_e_v/_t_t_y. Under System V, processes left ex-
ecuting after a user's logout are allowed further access to
/_d_e_v/_t_t_y until the terminal it represents is reallocated as a
controlling terminal for a new login. More specifically,
/_d_e_v/_t_t_y access is allowed whenever the process group ID of the
leftover process matches the process group ID of the terminal.
These IDs continue to match immediately after logout (since both
have been zeroed) until the terminal is re-enabled for login by
getty(1M). (Note that when the new login terminates, /_d_e_v/_t_t_y
access is restored again to these prior processes because the
controlling terminal's process group ID is re-zeroed.) Further,
if a process has its controlling terminal opened directly (not
via the /_d_e_v/_t_t_y synonym) then access is not restricted at all
after logout. These System V semantics can constitute security
problems. However, they are not explicitly required by the Sys-
tem V Interface Definition [ATT86]. 4.2BSD does nothing to
hamper /_d_e_v/_t_t_y access for processes remaining after logout. The
process group ID for the controlling terminal is not altered,
and, in fact, it is preserved even into the next login (since
subsequent logins join the already existing process group associ-
ated with the terminal, if any). These semantics also represent
security problems. However, 4.2BSD does prohibit access to the
controlling terminal if it is opened directly; this is accom-
plished when init(8) issues the vhangup(2) system call. Although
preserving the System V semantics for controlling terminal access
after logout is not deemed necessary or even recommended, it is
easy to do in the following way. Whenever a process that allo-
cated a controlling terminal dies, all processes which share this
controlling terminal have their process group ID zeroed. This is
analogous to, and occurs in addition to, the System V behavior of
zeroing the process group ID for all related processes when their
process group leader dies. /_d_e_v/_t_t_y checks similar to System V
can then be employed. TTY Driver Considerations For System V
compatibility, the suspend and delayed suspend characters are de-
faulted to a disabled value (0377). This means that job control
is "inactive" by default when a user logs on. The user must ex-
plicitly activate job control by defining either or both of these
characters via stty(1) or some similar interface. There should
be no problem allowing 4.2BSD-style job control, as modified
here, to co-exist with System V's shell layers job control sys-
tem. (See shl(1) and sxt(7) in the System V Release 2 reference
manuals.)

HP-UX Introduction HP-UX process groups are used in two major
ways. System V process groups closely resemble the concept of a
login session. That is, all processes spawned during the same
login session tend to belong to the same process group, and key-
board signals are typically sent to all processes spawned from
the login session. Job control process groups closely resemble
the concept of a task within a login session, where a task
represents a set of processes which are affected as a group by
job control operations. Every time a job control shell (e.g.,
csh) spawns either a foreground or background command, all
processes in the pipeline (and their descendents) are placed in
their own unique process group with the first command in the
pipeline being the process group leader. A task is in the fore-

ground when the process group associated with the controlling
terminal for the task (t_pgrp) is equal to the process group as-
sociated with the processes in the task (p_pgrp). Otherwise the
task is in the background. A job control shell moves a job
between the foreground and background by adjusting the terminal
process group (t_pgrp) of the controlling terminal. Note that a
job control shell forms new process groups with process group
leaders much more often than a non-job control (System V) shell
usually does (every command versus every login). HP-UX Process
Group Handling In HP-UX, the process group associated with a pro-
cess (p_pgrp) can be altered via setpgrp(2) or setpgrp2(2). As
in System V, setpgrp(2) can only set the process group to equal
the process ID (pid) of the process. When this happens, the
resulting process with pid = p_pgrp is called a System V process
group leader. Setpgrp2(2) is analogous to setpgrp(2) except that
it can affect processes other than the current process and can
cause the affected process to adopt a process group other than
that process's process ID (pid). Setpgrp2(2) also forms job con-
trol process groups rather than System V process groups. Using
setpgrp2(2), the calling process, or certain other processes, can
either become a job control process group leader or can cease to
be a process group leader. Because job control process groups
are handled slightly differently by HP-UX than System V process
groups, HP-UX marks processes that are job control process group
leaders (i.e., that have called setpgrp2(2) without subsequently
calling setpgrp(2)). The init(1M) process spawns all other
processes on the system either directly or indirectly. Before
directly spawning a process (after the fork(2) but before the
exec(2)), init calls setpgrp(2). Thus all original children (not
orphans) of init are forced to start out as System V process
group leaders. When a new process is created, it is assigned a
new pid but it inherits the process group number of its parent.
Thus child processes are, by default, not process group leaders
(although they can become a process group leader via either
setpgrp(2) or setpgrp2(2)). When a System V process group leader
that has a controlling terminal (see below) terminates, SIGHUP is
sent to all processes in the same process group. Further, when a
System V process group leader terminates, all processes which be-
long to this process group are altered to belong to no process
group (their p_pgrp is set to zero). Also, whenever any process
that allocated a controlling terminal terminates, all processes
that share this controlling terminal are altered to belong to no
process group (their p_pgrp is set to zero). When any process
exits, any pending SIGTTIN, SIGTTOU, and SIGTSTP signals are
cleared from all descendent processes (not just immediate chil-
dren). HP-UX Controlling Terminals A terminal that is currently
open by a process may also be a "controlling terminal" for a pro-
cess group (collection of processes). When certain control char-
acters are typed on a controlling terminal, signals are sent by
the terminal driver to all processes which belong to the process
group associated with the terminal. These include the job con-
trol suspend and delayed suspend characters. Controlling termi-
nals also play a role in determining whether a process is in the
foreground or background. See FOREGROUND/BACKGROUND PROCESSES
above. When a process becomes a System V process group leader
(via setpgrp(2)) it automatically loses its controlling terminal.
(This does not happen for a job control process group leader,

i.e. when calling setpgrp2(2).) After this, the first terminal
(that is not already a controlling terminal) opened by a process
that is a (System V or job control) process group leader is as-
signed to be the controlling terminal for that process; also the
process group associated with that terminal (t_pgrp) is set equal
to the process group associated with the process group leader
process (p_pgrp). All child processes inherit the controlling
terminal and process group of their parent. More precisely, in
HP-UX, the process group associated with a terminal (t_pgrp), can
be changed in the following ways: When a terminal is opened by a
System V or job control process group leader (pid == p_pgrp) that
does not already have a controlling terminal, it becomes the con-
trolling terminal for that process group (t_pgrp is set equal to
p_pgrp) if it is not already a controlling terminal. When a Sys-
tem V process group leader (pid == p_pgrp) dies, if it has a con-
trolling terminal that is associated with the same process group
(t_pgrp == p_pgrp), that terminal is disassociated from that pro-
cess group (t_pgrp is set to zero). When any process dies which
originally caused a controlling terminal to be created (see (1)
above), if it still has a controlling terminal, that terminal is
disassociated from its process group (t_pgrp is set to zero).
When the last process to have a terminal open closes that termi-
nal, the terminal is disassociated from its process group (t_pgrp
is set to zero). The TIOCSPGRP ioctl(2) call can explicitly
change a terminal's process group (t_pgrp) to any value within
certain security restrictions. This is used by a job control
shell to change which set of processes (process group) is in the
foreground. HP-UX Typical Scenario This is a typical scenario
for the birth and death of a login, its controlling terminal, and
the process groups associated with a job. The init(1M) process
wants to enable a terminal for login. It creates a new process
via fork(2) and calls setpgrp(2) to make it a System V process
group leader which also removes its controlling terminal. Init
then runs the getty(1M) program as the process via exec(2). Get-
ty opens the terminal causing the terminal to become getty's con-
trolling terminal and be associated with getty's process group
(t_pgrp is set to p_pgrp). As a side effect, this process is now
marked as having created a controlling terminal; when it dies the
controlling terminal will be freed for re-use. Getty replaces
itself with login(1) which replaces itself with a login shell.
At this point one of two scenarios typically takes place. The
login shell is either a job control shell (e.g., csh(1)) or it is
not (e.g., sh(1)). If the login shell is not a job control shell
then things proceed much as they do on System V. Usually no pro-
gram calls setpgrp(2) or setpgrp2(2) and thus all descendent
processes of the login shell are in the same process group and
have the same controlling terminal; keyboard signals are sent to
all processes launched during this session. If the login shell
is a job control shell, then job control operations are per-
formed. Csh begins to manipulate the process group associated
with the terminal (t_pgrp) via the TIOCSPGRP and TIOCGPGRP
ioctl(2) calls and the process group associated with its child
processes (p_pgrp) via setpgrp2(2) in order to allow job control.
This happens (briefly) in the following way: Csh launches a pipe-
line by making all programs in the pipeline be immediate descen-
dents of csh. (This is different from sh which makes all pro-
grams in the pipeline except the last be descendents of the last

program in the pipeline.) All programs in the pipeline belong to
the same process group (not the same as csh's process group) and
the first program in the pipeline is the process group leader
(its pid is equal to the process group for the pipeline). This
process is specially marked as a job control process group leader
since it was established via setpgrp2(2); this basically prevents
SIGHUP from being sent to the pipeline when the lead process
dies. If the pipeline is being launched in the foreground (or
moved to the foreground) then the process group associated with
the terminal (t_pgrp) is set to the process group of the pipeline
via the TIOCSPGRP ioctl(2). When a logout occurs, the login
shell dies. Any pending SIGTTIN, SIGTTOU, and SIGTSTP signals
are cleared for all descendent processes. All immediate child
processes are inherited as orphans by init; if any are currently
stopped then they are killed (SIGKILL). Since the login shell
(actually the getty before it was overlaid) created a controlling
terminal, the controlling terminal is now freed (t_pgrp is set to
zero) so that it can be claimed as a controlling terminal by a
subsequent getty respawned by init; also, all processes which
share this controlling terminal have their process group (p_pgrp)
set to zero. When a logout occurs and the login shell is a Sys-
tem V process group leader, SIGHUP is sent to all processes in
the same process group, and the process group (p_pgrp) of all
descendent processes is set to zero. Note that there may contin-
ue to be background processes (previously started by the now de-
funct login shell) which continue to execute but keyboard signals
will no longer be sent to these processes (since both t_pgrp and
p_pgrp equal zero).

ACKNOWLEDGEMENTS The following people from Hewlett-Packard con-
tributed to the interface design and implementation of job con-
trol for HP-UX: Jim Barton, Dave Decot, Larry Dwyer, Jeff Glas-
son, Rita Hanson, Stephen Hares, Steve Head, Bob Lenk, John Mar-
vin, Dave Mears, Peter Notess, Arn Schaeffer, Eviatar Shafrir.
Guy Harris from Sun Microsystems made many substantive comments
and suggestions which contributed to the interface design and to
this paper.

REFERENCES _S_y_s_t_e_m _V _I_n_t_e_r_f_a_c_e _D_e_f_i_n_i_t_i_o_n, Issue 2,
AT&T, 1986.
M. J. Bach and S. J. Buroff, "Multiprocessor UNIX Operating Sys-
tems", _A_T&_T _B_e_l_l _L_a_b. _T_e_c_h. _J., 63, No. 8 (October 1984), pp.
1733-1749. Stephen Head and Donn Terry, "Reliable Signals Propo-
sal", IEEE P1003 Proposal #P.042, Hewlett-Packard Co., September
11, 1985. William Joy, "An Introduction to the C Shell", Comput-
er Science Division, University of California at Berkeley, No-
vember 1980. David Lennert, Guy Harris, et. al., "System V Com-
patible BSD-style Job Control Facilities", IEEE P1003 Proposal
#P.047, Hewlett-Packard Co. & Sun Microsystems, April 9, 1986.
Dennis M. Ritchie, "The UNIX I/O System", _U_N_I_X _P_r_o_g_r_a_m_m_e_r'_s
_M_a_n_u_-
_a_l, Seventh Edition, Volume 2b, Bell Telephone Laboratories, Mur-
ray Hill, NJ, January 1979. Marc J. Rochkind, _A_d_v_a_n_c_e_d _U_N_I_X
_P_r_o_-
_g_r_a_m_m_i_n_g, Englewood Cliffs, N.J.: Prentice-Hall, 1985. Guy

Harris, "Notes on Signal, Terminal Interface, and User/Group ID
Handling Proposals", IEEE P1003 Proposal #P.045, Sun Microsys-
tems, January 11, 1986. K. Thompson, "UNIX Implementation", _B_e_l_l
_S_y_s_t_e_m _T_e_c_h. _J., 57, No. 6 (July - August 1978), pp. 1931-1946.
_U_N_I_X _P_r_o_g_r_a_m_m_e_r'_s _M_a_n_u_a_l, 4.2 Berkeley Software
Distribution,
Virtual VAX-11 Version, Computer Science Division, University of
California at Berkeley, August 1983.

APPENDIX

JOB CONTROL MANUAL PAGE EXCERPTS The following pages contain the
UNIX manual pages which are effected by adding a System V compa-
tible implementation of 4.2BSD job control. Note that each manu-
al page generally contains only that portion of text which
differs from the System V manual page of the same name. Some-
times, unchanged text is provided for locality reference.
Changed text lines are flagged with change bars.

